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Tools

Given a field F, an ideal J C F[Xy, ..., Xx] and a monomial
ordering <, the footprint is:

AL(d) = (M= Xl’-1 .- X!m | M is not the leading monomial
of any polynomial in J}
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Given a field F, an ideal J C F[Xy, ..., Xx] and a monomial
ordering <, the footprint is:

AL(d) = (M= Xl’-1 .- X!m | M is not the leading monomial
of any polynomial in J}

By definition of a Grobner basis the set AL (J) can be read of from
it.
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Tools

Given a field F, an ideal J C F[Xy, ..., Xx] and a monomial
ordering <, the footprint is:

AL(d) = (M= Xl’-1 .- X!m | M is not the leading monomial
of any polynomial in J}

By definition of a Grobner basis the set AL (J) can be read of from
it.

Theorem: {M+ J | M € AL(J)} is a basis for F[Xq,..., Xpn]/J
as a vector space over F.
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The Klein curve

ls = (Y3+X3Y + X, X8+ X, Y8+ Y) C Fg[X, Y]
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The Klein curve

ls = (Y3+X3Y + X, X8+ X, Y8+ Y) C Fg[X, Y]

Ordering <., is given by X®Y# <, X7Y? if either (i) or (ii) holds
() 2a+38 <2vy+30, (i) 2a+38=2v+3) but 8 <.
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The Klein curve

ls = (Y3+X3Y + X, X8+ X, Y8+ Y) C Fg[X, Y]

Ordering <., is given by X®Y# <, X7Y? if either (i) or (ii) holds
() 2a+38 <2vy+30, (i) 2a+38=2v+3) but 8 <.

{Y3 4+ X3Y + X, X8 = X,X"Y + Y} is a Grobner basis for /g
w.r.t. <y.

Y2 XY? X2y?2 X3y2 X4Yy?2 X5y2? X6y2
Y XY X2y XY X*Y X°Y XOY
1 X X2 X3 X4 X5 X6 X7

Figure: A, (l)
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Affine variety codes

ldeal | C Fo[X1,. .., Xm]

lg =14+ (XT = Xq, ..., X3 — Xim)
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Affine variety codes

ldeal | C Fo[X1,. .., Xm]
lg =14+ (XT = Xq, ..., X3 — Xim)

V(lg) =:{P1,...,Pn}

. { FolXi, . Xml/lq — B
’ ev(F—{—Iq):(F(Pl),...,F(P,,))
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Affine variety codes

ldeal | C Fo[X1,. .., Xm]
lg =14+ (XT = Xq, ..., X3 — Xim)

V(lg) =:{P1,...,Pn}

. { FolXi, . Xml/lq — B
’ ev(F—{—Iq):(F(Pl),...,F(P,,))

For L C AL(ly) define:

C(I,L) = Spang_{ev(M +Ig) | M € L}.
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The footprint bound

Corollary: #V/(ly) = #A-(ly) and dim C(/, L) = #L.

Proof: We know that {M + I | M € AL(l4)} is a basis for
Fq[X1,...,Xm]/lq as a vector space. By Lagrange interpolation
ev: Fq[X1,..., Xm]/lqg — Ty is surjective. But Iy is the vanishing
ideal of {P1,...,P,} and therefore ev is injective. O
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The footprint bound

Corollary: #V/(ly) = #A-(ly) and dim C(/, L) = #L.

Proof: We know that {M + I | M € AL(l4)} is a basis for
Fq[X1,...,Xm]/lq as a vector space. By Lagrange interpolation
ev: Fq[X1,..., Xm]/lqg — Ty is surjective. But Iy is the vanishing
ideal of {P1,...,P,} and therefore ev is injective. O

Corollary: Consider ¢ = ev(F + Ig). Then
wi(C) = n— #A<((F) + o).

Proof: Replace I with (F) + I in above corollary. O
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The footprint bound

Corollary: #V/(ly) = #A-(ly) and dim C(/, L) = #L.

Proof: We know that {M + I | M € AL(l4)} is a basis for
Fq[X1,...,Xm]/lq as a vector space. By Lagrange interpolation
ev: Fq[X1,..., Xm]/lqg — Ty is surjective. But Iy is the vanishing
ideal of {P1,...,P,} and therefore ev is injective. O

Corollary: Consider ¢ = ev(F + Ig). Then
wi(C) = n— #A<((F) + o).

Proof: Replace I with (F) + I in above corollary. O

Oz ={M € A(ly) | M € Im((F) + Ig)} and wy(&) = #0~(F).
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First “naive” bound on minimum distance

Let ¢ =ev(F + ;) and Im(F) = XY.

wi(c) = #0O<,(F)
> #{XY,X2Y,... X°V XY? X?Y? ... X°Y?)} =12

Y2 XY? X2y?2 X3y2 X4y? X5y2 X6y2
Y XY X2y X3Y X*Y X°Y X®y
1 X X2 X3 X4 X5 X6 X7

7 6 5 4 3 2 1
14 12 10 8 6 4 2
22 19 16 13 10 7 4 1

Figure: A, (lg) and naive bound on wy(€) for all possible leading
monomial
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How to derive improved information on #(F)

Y2 XY?2 X2y2?2 X3y2 X4y? X5y2 X6y2
Y XY X2y X3 X*Y X°Y XOy
1 X X2 X3 X4 X5 X® X7

6 8 10 12 14 16 18
7 9 11 13 15
0 2 4 6 8 10 12 14

w
(6]

Figure: A, (lg) and w(X'Y7) = 2i + 3;.

...if only I and <, satisfied the order domain conditions...but they
do not

Geil, Ozbudak Bounding the minimum distance of affine variety codes using s;



The order domain conditions

Definition: An ideal / and a weighted degree ordering <, satisfy
the order domain condition if:

1. I has a Grobner basis {F1, ..., Fs} with respect to <,, such
that all F; possess (exactly) two monomials of highest weight.

2. For M,N € A, (1) with M # N we have w(M) # w(N).
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The order domain conditions

Definition: An ideal / and a weighted degree ordering <, satisfy
the order domain condition if:

1. I has a Grobner basis {F1, ..., Fs} with respect to <,, such
that all F; possess (exactly) two monomials of highest weight.
2. For M,N € A, (1) with M # N we have w(M) # w(N).
Let ¢ =ev(F) where Im(F) =M e AL, (lg) and w(M) = A
(@ = - (B, )\ -+ w(B, (1)

> e #(w(A<W(/>)\(A n w(mw(/)) — 0
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The order domain conditions

Definition: An ideal / and a weighted degree ordering <, satisfy
the order domain condition if:

1. I has a Grobner basis {F1, ..., Fs} with respect to <,, such
that all F; possess (exactly) two monomials of highest weight.
2. For M,N € A, (1) with M # N we have w(M) # w(N).
Let ¢ =ev(F) where Im(F) =M e AL, (lg) and w(M) = A
(@ = - (B, )\ -+ w(B, (1)

> e #(w(A<W(/>)\(A n w(Aw(/)) — 0

Klein curve | = (Y3 + X3Y + X) satisfies (1), but NOT (2).
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Second order domain condition not being satisfied

A family of cases where only first order domain condition is
satisfied was treated in [GM15]. However, [GM15] does not apply
to (Y3 4+ X3Y + X).

The following is involved, but worth it!

Geil, Ozbudak Bounding the minimum distance of affine variety codes using s;



Codes from the Klein curve

dim 1 2 3 4 5 6 7 8 9 10 11
dnaive | 22 19 16 14 13 12 - 10 8 - 7
dus 22 19 18 16 15 - 13 12 - 10 9
dgrassl 22 19 18 17 15 14 13 12 11 10 9
dim 12 13 14 15 16 17 18 19 20 21 22
dnaive - 6 5 - - 4 3 -2 - 1
dus - 7 6 b5 - 4 3 -2 - 1
dgrassl 8 v 7 6 5 4 4 3 2 2 1
Table: Bounds for the Klein codes: dpaive is the naive bound, dys is the
involved bound. For comparison dgrassl is the best known minimum

distance from Grassl's table

Moreover we obtain additional information. For instance the
[22,21, 1]g code only contains 7 codewords of weight 1.
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Clearly, {Y, Y2, XY, XY2,... . X0Y,X6y2} c O (F).
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Clearly, {Y, Y2 XY, XY? ... X0y X°Y2} c O, (F).
Y2F(X,Y)

XY + o XY2 + Y2+ X

aX* (a3 + a) X3 + atax X? + (a1a3 + 1)X + a5.

Y34+ X3Y+X

F(X.Y)

If a3 # 0 then
{X47X5>X67X7} - D<w(F)
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Clearly, {Y, Y2 XY, XY? ... X0y X°Y2} c O, (F).
Y2F(X,Y)
VXX X3y 4 XY 4 3y Y2 4 X
FeGY) aX* (a3 + a) X3 + atax X? + (a1a3 + 1)X + a5.

If a3 # 0 then
{X47X5>X67X7} - D<w(F)

If a1 =0 and a # 0 then
{X37X47X57X67X7} C D'<W(F)
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Clearly, {Y, Y2 XY, XY? ... X0y X°Y2} c O, (F).
Y2F(X,Y)
VXX X3y 4 XY 4 3y Y2 4 X
FeGY) aX* (a3 + a) X3 + atax X? + (a1a3 + 1)X + a5.

If a3 # 0 then
{X47X5>X67X7} - D<w(F)

If a1 =0 and a # 0 then
{X37X47X57X67X7} C D'<W(F)
If a1 = a» = 0 then

{X, X2, Xx3x% X5 X6 X"y c O, (F).
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Clearly, {Y, Y2 XY, XY? ... X0y X°Y2} c O, (F).
Y2F(X,Y)
VXX X3y 4 XY 4 3y Y2 4 X
FeGY) aX* (a3 + a) X3 + atax X? + (a1a3 + 1)X + a5.

If a3 # 0 then
{X47X5>X67X7} - D<w(F)

If a1 =0 and a # 0 then
{X3, X% X5 X8 X"y c O, (F).
If a1 = a» = 0 then
{X, X2, Xx3x% X5 X6 X"y c O, (F).

w(C) > 14 + min{4,5,6} = 18.

Geil, Ozbudak
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FIX,Y)= Y%+ a X34+ aXY +a3X? +a,Y + asX + ag

Clearly, {Y2,XY2 ... X®Y2} c O, (F).
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FIX,Y)= Y%+ a X34+ aXY +a3X? +a,Y + asX + ag

Clearly, {Y2,XY2 ... X®Y2} c O, (F).

YF(X,Y)
YHXYEX Gl 4 )XY + aXY2 + a3 X2y
+asY? +asXY + aY + X.
If a1 # 1 then

{X3Y, X*Y, X°Y, X%y} e O (F).
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FIX,Y)= Y%+ a X34+ aXY +a3X? +a,Y + asX + ag

Clearly, {Y2,XY2 ... X®Y2} c O, (F).

YF(X,Y)
YHXYEX Gl 4 )XY + aXY2 + a3 X2y
+asY? +asXY + aY + X.
If a1 # 1 then

{X3Y, X*Y, X°Y, X%y} e O (F).

Y((a1 + 1)X3Y 4+ apXY? 4+ a3X?Y 4 a, Y2 4 as XY + ag Y +
FOOY) (a1 4 1)(a1X8 + aaX?Y + 23X + aaX3Y + asX* + a6X3)
+arXY3 4+ a3 X?Y? 4 a5 Y3 + as XY? + a6 Y2 + XY.
If a1 # 0 then we also have
X0 X\ [ (F)
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FIX,Y)=Y?+a X3+ aXY +asX?+asY +as X + ag —

cont.

Assuming next that a; = 0 the above expression becomes
XY + a3X® + 2 X3Y + as X? + a6 X3 + 2 XY?3
+a3X2Y?2 4+ a3 Y3 + asXY? + a6 Y2 + XY

a3X® + aaX3Y + as X + a6 X3 + a3 X2Y? + a, Y3
+asXY? + a6 Y2 + XY + aX?

Y3+ X3Y+X

F(X.,Y
OO 23X5 1 as Xt + 36X3 + a3a0X3Y + 32X* 1 a3, X2Y

+azas X3 + azagX? + as XY? + agY? + XY + ap X2,

If a3 # 0 then
(X5, X5, X7} € O, (F).
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FIX,Y)=Y?+a X3+ aXY +asX?+asY +as X + ag —

cont.

Hence, continuing under the assumption a3 = 0 we are left with

as X + a6 X3 + asXY? + ag Y2 + XY + apX?
F(X,Y)

— a5X4+a6X3+a532X2Y+a5a4XY+a§X2+a5a6X+36Y2
+XY + a2 X2,

and so on ... and so on ...
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FIX,Y)=Y?+a X3+ aXY +asX?+asY +as X + ag —

cont.

Hence, continuing under the assumption a3 = 0 we are left with

as X + a6 X3 + asXY? + ag Y2 + XY + apX?
F(X,Y)

— a5X4+a6X3+a532X2Y+a5a4XY+a§X2+a5a6X+36Y2
+XY + a2 X2,

and so on ... and so on ...

WH(g) Z 7 + min{6, 67 87 97 67 77 13} = 13
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Final comparison

Y2 XY?2 X2y2 X3y2 X4y? X5y2 X6y2
Y XY X2y X3 X*Y X°Y X®y
1 X X2 X3 X4 X° X6 X7

7 6 5 4 3 2 1
14 12 10 8 6 4 2
22 19 16 13 10 7 4 1
13 10 7 5 3 2 1
18 15 12 9 6 4 2
22 19 16 13 10 7 4 1

Figure: A, (lg), naive bound on wy(Z) and improved information
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Thanks!
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