Classification of optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6

5th ICMCTA
Vihula Manor, 28 - 31 August 2017

Daniel Heinlein
University of Bayreuth, Germany
Daniel.Heinlein@uni-bayreuth.de

joined work with:
T. Honold, M. Kiermaier, S. Kurz, and A. Wassermann

2017-08-28
The main result

Theorem ([HHK$^+$], cf. [HK17])

$A_2(8, 6; 4) = 257$ and all maximum codes are extended LMRD.

That means that the maximum number of 4-dimensional spaces in \mathbb{F}_2^8 with pairwise intersection in at most a 1-dimensional space is 257,

or in terms of finite geometry, the maximum number of solids in $\text{PG}(7, 2)$ mutually intersecting in at most a point is 257.

Any $(8, 257, 6; 4)_2$ constant dimension code C is an extended LMRD, i.e.,

for a $(4 \times 4, 256, 3)_2$ maximum rank metric code M, the special solid $\bar{S} = \langle(0_{4\times4} | I_{4\times4})\rangle$ and an arbitrary solid S intersecting \bar{S} in a plane, the two possibilities for C (up to symmetry) are

1. $\{\langle(I_{4\times4} | B)\rangle | B \in M\} \cup \{\bar{S}\}$ and

2. $\{\langle(I_{4\times4} | B)\rangle | B \in M\} \cup \{S\}$.
Other optimal cases

Theorem ([HHK$^+$], cf. [HK17])

\[A_2(8, 6; 4) = 257 \text{ and all maximum codes are extended LMRD.} \]

The other optimal cases (nontrivial and no partial spread) are:

1. \[A_2(6, 4; 3) = 77 \text{ with 5 maximum codes [HKK15] and} \]
2. \[A_2(13, 4; 3) = 1597245 \text{ (no classification known) [BEÖ}^+16] \]
Outline of the proof I

Denote \bar{P} and \bar{H} a nonincident point hyperplane pair.

By counting and symmetry:

1. Each point and hyperplane is incident to ≤ 17 codewords.
2. If $\#C \geq 256$ then \bar{H} and \bar{P} are together incident to ≥ 31 codewords.
3. Then \bar{H} contains ≥ 16 codewords.
4. Then the codewords in \bar{H} are orthogonal $(7, N, 6; 3)_2$ cdcs with $\#N \geq 16$. . .
5. . . . which are classified: $(7, 17, 6; 3)_2 (715)$, $(7, 16, 6; 3)_2 (14445)$ [HKK16]
Outline of the proof II

Phase 1:
Exclude \((7, N, 6; 3)_2\) cdcs with \(\#N \geq 16\) embedded in \(\mathbb{F}_2^8\) or directly in \(\mathbb{F}_2^7\) via (integer) linear programming

Phase 2:
Extend remaining \(N\)-configurations to 31-configurations via an all-clique problem and symmetry

Phase 3:
Exclude 31-configurations via (integer) linear programming in \(\mathbb{F}_2^8\)
\[\Rightarrow A_2(8, 6; 4) = 257\]

Phase 4:
Gain structural insight via integer linear programming of 31-configurations that are subset of maximum code
\[\Rightarrow \text{all maximum codes are extended LMRD}\]
Thank you for your attention

Thomas Honold, Michael Kiermaier, and Sascha Kurz.
Optimal binary subspace codes of length 6, constant dimension 3 and minimum subspace distance 4.

Thomas Honold, Michael Kiermaier, and Sascha Kurz.
Classification of large partial plane spreads in PG(6, 2) and related combinatorial objects.